Linear latent structure analysis and modelling of multiple categorical variables

نویسندگان

  • I. Akushevich
  • M. Kovtun
  • K. G. Manton
  • A. I. Yashin
چکیده

Linear latent structure analysis is a new approach for investigation of population heterogeneity using high-dimensional categorical data. In this approach, the population is represented by a distribution of latent vectors, which play the role of heterogeneity variables, and individual characteristics are represented by the expectation of this vector conditional on individual response patterns. Results of the computer experiments demonstrating a good quality of reconstruction of model parameters are described. The heterogeneity distribution estimated from 1999 National Long Term Care Survey (NLTCS) is discussed. A predictive power of the heterogeneity scores on mortality is analysed using vital statistics data linked to NLTCS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

به‌کارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر هم‌خطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان

Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...

متن کامل

Latent Class Analysis

The basic idea underlying latent class (LC) analysis is a very simple one: some of the parameters of a postulated statistical model differ across unobserved subgroups. These subgroups form the categories of a categorical latent variable (see entry latent variable). This basic idea has several seemingly unrelated applications, the most important of which are clustering, scaling, density estimati...

متن کامل

Bayesian Analysis of Multiple Group Nonlinear Structural Equation Models with Ordered Categorical and Dichotomous Variables: A Survey

This paper is designed to give a complete overview of the literature that is available, as it relates to application of the Bayesian analysis model to investigate multiple group nonlinear structural equation models, also known as SEMs, including those having ordered categorical, dichotomous and categorical-dichotomous mixed variables. It will also work to summarize Bayesian multiple group nonli...

متن کامل

Categorical Reparameterization with Gumbel-Softmax

Categorical variables are a natural choice for representing discrete structure in the world. However, stochastic neural networks rarely use categorical latent variables due to the inability to backpropagate through samples. In this work, we present an efficient gradient estimator that replaces the non-differentiable sample from a categorical distribution with a differentiable sample from a nove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009